Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex.
نویسندگان
چکیده
Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development.
منابع مشابه
Functional maturation of excitatory synapses in layer 3 pyramidal neurons during postnatal development of the primate prefrontal cortex.
In the primate dorsolateral prefrontal cortex (DLPFC), the density of excitatory synapses decreases by 40-50% during adolescence. Although such substantial circuit refinement might underlie the adolescence-related maturation of working memory performance, its functional significance remains poorly understood. The consequences of synaptic pruning may depend on the properties of the eliminated sy...
متن کاملGABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons.
The plasma membrane GABA transporter GAT1 is thought to mediate uptake of synaptically released GABA. In the primate dorsolateral prefrontal cortex (DLPFC), GAT1 expression changes significantly during development and in schizophrenia. The consequences of such changes, however, are not well understood because GAT1's role has not been investigated in primate neocortical circuits. We thus studied...
متن کاملThe GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons
The plasma membrane GABA transporter GAT1 is thought to mediate uptake of synaptically-released GABA. In the primate dorsolateral prefrontal cortex (DLPFC), GAT1 expression changes significantly during development and in schizophrenia. The consequences of such changes, however, are not well understood because GAT1’s role has not been investigated in primate neocortical circuits. We thus studied...
متن کاملPostnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia.
Schizophrenia is a disorder of cognitive neurodevelopment with characteristic abnormalities in working memory attributed, at least in part, to alterations in the circuitry of the dorsolateral prefrontal cortex. Various environmental exposures from conception through adolescence increase risk for the illness, possibly by altering the developmental trajectories of prefrontal cortical circuits. Ma...
متن کاملFunctional properties of GABA synaptic inputs onto GABA neurons in monkey prefrontal cortex.
In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 25 11 شماره
صفحات -
تاریخ انتشار 2015